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Human spoken language uses a continuous stream of acoustic signals to communicate about continuous features of the world, by using
discrete forms—words—that segment the world into categories. Here we investigate how discreteness (the segmentation of a continuous
signal space into discrete forms) and systematicity (the consistent alignment of these forms with what they refer to in the world) can
emerge under communicative pressure. In an exploratory study, participants were paired with one another and played a game in which
they varied the pitch of auditory signals to communicate about a continuous color space, generalizing from a small, shared set of signal-
color pairings. The emergent systems exhibited both discreteness and systematicity, but only systematicity robustly predicted
successful communication. These findings offer insight into the cognitive strategies that could support the creation and evolution of
language, highlighting how pressures for effective communication can shape continuous signal spaces into structured, learnable systems.
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One of the most intriguing aspects of human spoken
language is that it exhibits both discrete and continuous
properties. While language unfolds in a continuous me-
dium—spoken words are transmitted as streams of
acoustic signals that vary in pitch, duration, and inten-
sity—listeners perceive these signals categorically
(Liberman et al. 1967; Harnad 2003), allowing for
clear distinctions between words like ‘bark’ and ‘park’
even though the underlying acoustic features are con-
tinuous. Similarly, while some conceptual spaces
underlying word meanings—such as the perceptual
continuum for color—are continuous, words such as
‘red’, ‘orange’, and ‘yellow’ correspond to concepts
that carve out discrete categories within these spaces
(Rosch 1973; Carey 2009). These categories are not in-
herently predetermined (Berlin and Kay 1969), yet they
allow for clear categorical distinctions that facilitate the
infinite productivity that defines human language.
Moreover, the organization of these discrete units of
sound and meaning is not arbitrary. Linguistic forms

and meanings are often systematically aligned in the
form of word order (e.g., we interpret the distinct mean-
ings of ‘the cat chased the dog’ and ‘the dog chased the
cat’; Sandler et al. 2005; Schouwstra and de Swart
2014). And although relationships between form and
meaning at the word level have traditionally been
viewed as arbitrary (Hockett 1960), recent work has
highlighted various ways in which systematicity is pre-
sent even at this level, where sound patterns may carry
meaning beyond arbitrary conventions (Monaghan
et al. 2014; Dingemanse et al. 2015; Blasi et al. 2016;
Pimentel et al. 2019). For example, similar-sounding
words like ‘glow’, ‘gleam’, and ‘glimmer’, have phono-
logical features that cue their related meanings (Bergen
2004; Sidhu 2025). Likewise, a color naming system
that uses the word ‘grue’ to label intermediate green-
blue hues, would demonstrate systematicity.

Thus, in a continuous meaning space, using a con-
tinuous physical medium, discreteness and systematic-
ity critically work together to shape human language.
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Discreteness segments an infinite set of sounds and
meanings into a finite set of categories that we commu-
nicate about, thus providing the foundational building
blocks for communication. And systematicity organizes
these building blocks in ways that render form-meaning
relationships highly transparent and predictable, bene-
fiting acquisition and learnability (Dingemanse et al.
2015; Raviv et al. 2021), processing and use
(Monaghan et al. 2012; Nolle et al. 2018), as well as
transmissibility and evolvability (Kirby et al. 2008;
Xu et al. 2013; Raviv et al. 2019; Morin et al. 2022;
Motamedi et al. 2022). In other words, given con-
straints on information processing and learning (e.g.,
Gibson et al. 2019), these strategies simplify and struc-
ture the form and meaning space, so that we can suc-
cessfully communicate with each other. In the current
work, we focus on the cognitive strategies underlying
this link: how discreteness and systematicity might
emerge to facilitate communicative goals.

Prior research has shown that both discreteness and
systematicity can independently emerge in artificial lan-
guages, but primarily in settings without real-time com-
munication and without the continuous signal and
meaning spaces that are reflective of human language.
These studies often use already-discretized signaling
spaces paired with continuous meaning spaces (e.g.,
Xuetal.2013; Carretal.2017), or continuous signaling
spaces paired with with already-discretized meaning
spaces (e.g., De Boer and Verhoef 2012; Verhoef et al.
2015, 2016). Nonetheless, systematicity has been ob-
served to emerge in real-time communication games in-
volving continuous signal spaces and discretized
meaning spaces (Theisen et al. 2010; Verhoef et al.
2016). Additionally, computer simulations have shown
that both discreteness (Lieck and Rohrmeier 2021) and
systematicity (Zuidema and Westermann 2003) can
emerge as optimal solutions to communication prob-
lems, but these studies have not explored how discrete-
ness and systematicity interact under communicative
pressure in real-time communication settings.

To directly study how these strategies emerge to sup-
port communication, we designed an online communi-
cation game (see Miiller and Raviv 2021, for a review
on the use of communication games for studying lan-
guage evolution) using a minimal artificial setting
where both the signal and meaning space are continu-
ous, and where we could apply standard analysis tech-
niques to investigate the emergence of discreteness and
systematicity. More specifically, participants used whis-
tled signals (Verhoef 2012), to communicate about col-
ors. They had to create a communication system with
their partner that generalized a small amount of ‘com-
mon ground’ (a set of arbitrary signal-color pairings)
to a larger set of colors. Thus, in our setting, both
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discreteness and systematicity are initially absent, but
could emerge under communicative pressure. We con-
ducted a set of exploratory analyses testing whether dis-
creteness and systematicity emerged in the first place, as
well as which of these strategies helped people commu-
nicate successfully in the game.

1. Methods

Our experiment consisted of a learning phase immedi-
ately followed by a communication phase (see Fig. 1).
In the learning phase, each participant learned the
same set of five signal-color mappings shown in
Fig. 1a, initializing their ‘common ground’. In the com-
munication phase, participants were then paired up and
asked to communicate forty colors to each other, ex-
trapolating from the learned signals to communicate
about colors they had not encountered before.

1.1 Materials

1.1.1 Colors

The forty colors that participants had to communicate
are shown in the color wheel of Fig. 1b. They are a slice
from the World Color Survey’s (WCS) standard color
naming grid (Berlin and Kay 1969), with a fixed bright-
ness level (row F in the WCS grid). This choice of colors
captures the hue dimension while maintaining a reason-
able experiment length. Of these, the five colors utilized
in the learning phase (Fig. 1a) were randomly chosen to
be approximately equidistant, with slight random per-
turbations of +1 — 3 color chips away from the initial
selections to introduce perceptual irregularity.

1.1.2 Signals

The signals were produced by an on-screen slide whistle
interface similar to Hofer and Levy (2019), represented
as sequences of pitch over time (Fig. 1a). In our experi-
ment, this whistle was visually represented as the trunk
of an alien creature, which participants controlled using
the mouse and space bar. Stretching the creature’s trunk
decreased the pitch, while shortening it increased the
pitch (see https:/osf.io/ynbp6/ for a video sample). To
obtain the five initialization signals (Fig. 1a), we selected
signals with a variety of structured perceptual features,
from a larger set of signals previously evaluated in a
norming study conducted by Hofer and Levy (2019) in
which subjects were asked to rate signals according to
their relative complexity and perceptual similarity.

1.2 Procedure

1.2.1 Learning phase

During the learning phase, each participant learned the
same five signal-color mappings (Fig. 1a). First, participants
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Fig. 1. Experimental setup. In the learning phase (a), participants learn five initialization signal-color pairings (signals shown are a visualiza-
tion of pitch over time). In the communication phase (b), participants are assigned speaker and listener roles, and have to extrapolate their

learned signals to communicate about a total of forty colors.

heard the signal for each color and were instructed to use
their own slide whistle to reproduce the signal. This was
done five times for each signal-color pairing. Then, we
tested how well participants remembered the signal-color
mappings: For each pairing, the signal was played while
participants saw the target color and a distractor color
(pseudo-randomly selected from the remaining four col-
ors), and had to guess the color corresponding to the signal.
Participants passed if they correctly guessed four of the five
pairings. No feedback was given for this phase of the task.
Finally, to measure how well participants actually remem-
bered each signal, we asked participants to reproduce the
signals for each of the five colors from memory.

1.2.2 Communication phase

After passing the learning phase, participants were
grouped into pairs and randomly assigned speaker and
listener roles that alternated every five trials. In each tri-
al, the speaker produced a whistled signal to convey a
designated target color to the listener. The listener
then indicated their guess on a color wheel containing
forty colors (see Fig. 1). Once the trial ended, both par-
ticipants saw the target and the guessed color, and bonus
payments were given based on how accurate the listen-
er’s guess was in terms of perceptual distance in color
space (see Analysis Techniques section below for specif-
ics). Participants were given blocked feedback about
how close their guesses were, on average, across the
last 10 trials. Each participant had forty trials as speaker
and forty as listener, with the order of the colors and the
color wheel orientation randomized between partici-
pants. See Fig. A.1 for screenshots of the task.

1.3 Participants

We recruited sixty-five native English speakers from the
USA or Canada with normal or corrected-to-normal

vision, from the crowdsourcing platform Prolific.
Participants were prescreened using a color sorting
task (Foutch et al. 2011) and a short audio task
(Woods et al. 2017) to verify that they have normal col-
or vision and that they were using headphones. Of these,
fifty-four participants passed the learning phase and
advanced to the communication phase, with fifty partic-
ipants successfully completing the communication
phase, resulting in twenty-five full games.
Compensation was variable based on progress in the
study, but averaged 15 per hour. Participants received
an additional bonus of up to approximately 10% of their
earnings contingent on their performance in the learning
and communication tasks. Participants gave informed
consent, and all procedures were approved by the MIT
Committee for the Use of Humans as Experimental
Subjects.

1.4 Analysis techniques

1.4.1 Measuring similarity between signals and
referents

To examine participants’ communication systems, we
analyze our data using measures of similarity, classical-
ly used to study people’s mental representations in vari-
ous domains including color (Shepard 1987; Shepard
and Cooper 1992).

14.1.1

The signals participants produced in the experiment are
time series data represented as pitch over time. To de-
termine similarity between signals, we used Dynamic
Time Warping (DTW; Sakoe and Chiba 1978; Berndt
and Clifford 1994), following its use in prior work to
analyze continuous signals in cultural transmission ex-
periments (e.g., Verhoef 2012). DTW is a technique

Similarity between signals
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used to measure the similarity between two sequences
that may vary in speed or duration. Unlike standard dis-
tance measures that compare signals point-by-point at
corresponding time intervals, DTW flexibly aligns se-
quences by allowing the temporal axis to be stretched
or compressed. This alignment process matches ele-
ments of the two sequences based on their overall
shapes, effectively minimizing differences in timing.
Thus, even if one signal spans two seconds and another
spans five seconds, they can still be considered highly
similar if their overall shapes closely match (refer to
Fig. 1 for example signals). DTW is particularly useful
in analyzing human-generated signals such as speech
or gesture, where timing often varies naturally but the
overall patterns remain consistent and are more inform-
ative for their meaning.

1.4.1.2  Similarity between referents

We used Euclidean distance in CIELUV color space to
quantify similarity between colors. The CIELUV color
space represents colors using three numerical values:
L*, u*, v* (chromaticity coordinates). It is specifically
designed so that the Euclidean distance between two
points corresponds to the perceptual distance perceived
by human observers. In other words, two colors that are
numerically closer in this space appear more similar to
human vision than colors that are numerically farther
apart (Schanda 2007).

1.4.2 Visualizing signal similarities in a
lower-dimensional space

To qualitatively visualize and compare participants’ sig-
nal repertoires, we calculated signal similarities for all
signal pairs across participants using DTW, allowing
us to embed and visualize the data in a lower-
dimensional space using multidimensional scaling
(MDS; Kruskal 1964). MDS is a statistical technique
that represents similarities between items as distances
in a lower-dimensional space, preserving the relative re-
lationships observed in the original, higher-dimensional
data. It has classically been used to visualize human simi-
larity judgments, such as perceived similarities among
objects, concepts, or perceptual stimuli (Shepard and
Cooper 1992). In our study, MDS allows us to project
information about the signals into a space that we can
visually interpret, as well as use for further calculations.

1.4.3 Discreteness and systematicity

We next turn to how we measured discreteness and sys-
tematicity—the critical features of participants’ com-
munication systems that we were interested in.

The conceptual examples in Fig. 2 display different
combinations of discreteness and systematicity that
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participants’ communication systems can exhibit. In
this visualization, each marker represents an individual
signal (colored by its corresponding referent), posi-
tioned along a one-dimensional signal-similarity space.
The distance between markers represents perceptual
differences between signals, such that signals closer to-
gether are perceived as more similar. This simplified re-
presentation corresponds to a 1D projection computed
using MDS, on DTW similarities.

1.4.3.1

Human language segments the continuous spectrum of
human experience into discrete categories marked by
categorical boundaries, even in continuous perceptual
spaces like colors, motion, spatial relationships, and
time. In our conceptual examples, a signaling system ex-
hibits high discreteness (Fig. 2, rows 1 and 2) if signals
clearly cluster into distinct groups. Such clusters are
analogous to linguistic words—discrete entities that
map onto sets or ranges of referents.

To quantitatively measure discreteness, we opera-
tionalized discreteness in two complementary ways,
each capturing distinct intuitions about what it means
for a system to be discrete." First, we calculated the
Hopkins statistic (Lawson and Jurs 1990), computed
on MDS embeddings. The Hopkins statistic quantifies
how clustered a system is, by comparing distances be-
tween points and their nearest neighbors in the dataset
against distances from points in a uniformly distributed
null. Values range from 0 (highly regular distribution
with minimal clustering) to 1 (highly clustered), with
0.5 indicating a random uniform distribution. This
metric captures the overall tendency for signals to
form distinct clusters rather than being evenly spread
out from each other.

We also measured discreteness using the number of
clusters detected by Hierarchical Density-Based
Spatial Clustering of Applications with Noise
(HDBSCAN; Campello et al. 2013). HDBSCAN is a
nonparametric clustering algorithm that identifies clus-
ters based on local density, requiring only one major
free parameter (minimum points per cluster). It is ro-
bust to varying cluster shapes and densities, and oper-
ates directly on the DTW signal similarities, making it
particularly suitable for detecting natural groupings
within signal spaces. HDBSCAN identifies distinct clus-
ters in regions where signals densely concentrate, and
returns a single cluster if the signals are uniformly dis-
tributed. This metric captures a more indirect notion
of discreteness: the notion that discrete systems consist
of multiple clearly defined groups of similar signals
(analogous to the number of words in a language).”

Discreteness
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Fig. 2. The discreteness-systematicity hypothesis space. Each signal, associated with a referent (its color), is represented by a point in a

one-dimensional signal-similarity space.

1.4.3.2  Systematicity

A signaling system has high systematicity (Fig. 2, rows 1
and 3) if signal forms provide reliable cues to their
meanings. In the context of our experiment, the exist-
ence of systematicity implies a consistent relationship
between the similarity of signals and the similarity of
their associated colors. For example, signals represent-
ing similar colors (such as blue and green) should sound
more alike than signals representing more distinct col-
ors (such as blue and yellow).

To quantify systematicity, we computed the distance
correlation between pairwise DTW distances (signal
similarities) and CIELUV distances (color similarities).
Distance correlation is a measure that captures both lin-
ear and nonlinear relationships between two sets of dis-
tances (Székely et al. 2007), and is analogous to the way
systematicity has been calculated in previous work
(e.g., Mantel 1967; Kirby et al. 2008; Verhoef et al.
2015; Atkinson et al. 2019). Distance correlation
ranges from 0, indicating no relationship (independ-
ence), to 1, indicating a perfect deterministic corres-
pondence between signal similarity and referent
similarity.

2. The discreteness-systematicity
hypothesis space

What could participants’ extrapolated communication
systems look like? The most straightforward strategy
is that participants simply reproduce their signals into
perceptually similar clusters around the nonsystematic
initialization signal-color pairings (Fig. 2 row 2; low
systematicity high discreteness). Alternatively, partici-
pants could come up with new, systematic signals to

refer to each cluster (Fig. 2 row 1; high systematicity
and high discreteness)—this strategy may be more chal-
lenging because participants have to come up with new
agreed-upon signal-meaning pairs, but the increased
systematicity could facilitate communication because
of increased expressivity.® Finally, strategies that could
theoretically enable participants to precisely communi-
cate all of the colors are communication systems where
each signal corresponds to a distinct meaning (i.e. low
discreteness). Such a system could either exhibit high
(Fig. 2 row 3) or low (Fig. 2 row 4) systematicity.

From this, we can see that systematicity and discrete-
ness can interact with each other in nuanced ways. A
maximally systematic language would be highly expres-
sive, capable of communicating fine-grained differences
in meaning, but could impose cognitive pressures on
learning and memory. By contrast, a discrete system
might be less expressive but more conducive to learning
and coordination. Simply reproducing initialization sig-
nals for perceptually similar clusters could facilitate
communication by reducing miscoordination risks,
while forming new systematic communication systems
might enhance learnability and informativity.

3. Results

3.1 Performance in the learning

and communication phases

We started by evaluating how well participants were
able to learn the signals and generalize their learned sig-
nals to communicate with their partners, in the first
place. To this end, we assessed the performance in the
learning and communication phase. For the learning
phase, we measured performance by how accurately
people reproduced the five signals at the end of the
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Fig. 3. (a) Communication score (black curve) as a function of the number of online communication rounds. With time, participants learn to
communicate successfully. (b) Communication score (black curve) as a function of the alignment between the dyad’s signal repertoires.
Each point represents one game, and the y-axis corresponds to the mean of the two players’ communication score within a game. As ex-
pected, partners with more aligned repertoires communicated better. In both plots, shaded regions correspond to 95% confidence inter-
vals and dashed red lines correspond to baseline communication scores (i.e. random guesses).

learning phase. Specifically, we calculated the average
DTW distance between participants’ reproductions
and the original initialization signals. This average
was then normalized across participants to obtain a
learning score, with 0 indicating minimal learning and
1 indicating the most learning.

We assessed the communication phase performance
based on how accurately speakers guided their partner
to the target color. For each trial, communication ac-
curacy was determined using CIELUV distances be-
tween the target color and the guessed color,
normalized between 0 (identical colors) and 1 (the
most perceptually distinct pairs among the forty experi-
mental color patches).

Intuitively, we expect participants that are better
learners to do better in the communication phase be-
cause they would be able to, on average, more accurately
recall their partners’ signal-color associations and com-
municative tendencies. This was indeed the case (linear
regression predicting communication score from learn-
ing score; b = .241, t(45) = 3.022, p = .004; Fig. A.2).

To further assess how communication performance
evolves as a function of interaction time, we used a linear
mixed-effects model, with random intercepts for game
and participant, to predict communication score from
round (each participant communicated about the forty
colors, so there were eighty rounds in total).
Participants performed above chance overall (Fig. 3a;
M = 0.665, SE = 0.022, CL [0.62, 0.71],
t(24)=7.699, p<0.001). Performance increased
across rounds (b =0.002, t(1974) = 6.654, p < 0.001).

This suggests that participants were able to successfully
establish communicative conventions that allowed
them to go beyond the systems with which they started,
consistent with findings in related work on convention
formation in reference games (e.g., Hawkins et al.
2023).

3.2 Communication strategies

Having established that participants successfully learn
to communicate in our experimental setting, we next
turn to assessing what specific strategies enabled suc-
cessful communication.

3.2.1 Representing and visualizing signals

We computed the MDS embeddings using the pairwise
DTW signal similarity calculations. The quality of MDS
solutions is typically evaluated using stress values, which
quantify discrepancies between the original similarity dis-
tances and the distances in the lower-dimensional embed-
ding. See Fig. A.3 for MDS stress values as a function of
the number of dimensions retained.

Figure 4b depicts an MDS representation of all sig-
nals across all games, including the five initialization
signals from the learning phase. Each signal is colored
by its associated referent color, and the intialization sig-
nals are marked in boxes. Signals generally cluster
around the five initially learned signal-color associa-
tions. More surprising, however, is the emergent struc-
ture between the produced signals. Some signals
migrated to form a systematic hue gradient: For
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Fig. 4. Qualitative assessment of the use of systematicity. (a) A one-dimensional MDS embedding of the emergent signaling systems. Each
pair of lines corresponds to the two partners in a game. Each dot corresponds to a signal, and is colored by its target color. The games are
sorted by their average communication score. (b) A two-dimensional MDS visualization of all emergent signals across all dyads. As in (a),
each dot corresponds to a signal and is colored by its target color. Black squares correspond to the initialization signals.

example, yellow and pink signals migrated to be be-
tween the initial purple and green signals.

To assess whether similar systematic patterns appear
across individual participants, we visualized participants’
signals in a one-dimensional embedding space, ordered
by communication score (Fig. 4a). These embeddings in-
dicate that this systematic structure persists at the individ-
ual level: Participants produced intermediate signals to
interpolate between the learned signal-color pairings, in
a systematic way. Participants who were the least success-
ful at communicating displayed low systematicity and
discreteness, while participants who communicated bet-
ter seemed to display higher discreteness as well as emer-
gent systematic structure. The raw signals for each of the
games are visualized at https:/osf.io/mwnfy. Next, we as-
sess these qualitative observations quantitatively.

3.2.2 Partner alignment

What properties could drive successful communication?
The first dimension of interest we consider is how much
the two players’ signals align, within a game. Successful
communication is often characterized by the emergence
of shared conventions (Lewis 1969; Hawkins et al.
2019), implying that successful dyads in our task would
produce similar signals to refer to the same color. To
quantify this, for each game we calculated the similarity
of the two partners’ repertoires: For each color, we cal-
culated the similarity between the two partners’ signals,

and averaged this measure across all referents to obtain
a measure of partner alignment for each game (nor-
malized to be between 0 and 1, where 1 indicates
the most alignment). The degree to which partners’
signals were aligned, was correlated with how well
they communicated with each other (alignment vs.
within-game average communication score; Pearson’s
7(23) =0.752,#(23) = 5.465, p < 0.001) (Fig. 3b).

We tested how much this effect is explained by how
well individual participants are able to remember
signal-color pairings in the first place. In a linear regres-
sion predicting communication score from partner
alignment and learning score, we found a main effect
of alignment but not of learning score (alignment
b=0.288, #44)=6.202, p <0.001; learning score
b=0.012, #(44)=1.144, p =0.259), suggesting that
memory for specific signals does not itself drive partic-
ipants’ ability to align their signals to each other and do
better in the task.

3.2.3 Discreteness

Next, we investigate what properties of participants’
emergent communication systems did help them com-
municate better in the task. We started by calculating
the Hopkins statistic computed on three-dimensional
MDS embeddings.* In three-dimensional embedding
space, participants’ systems tended to be discrete;
M(SD) discreteness = 0.75(0.06). We then measured
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Fig. 5. Systematic (a) and discrete (b) systems were better for communication. Most participants produced systematic communication sys-
tems (c), and partner alignment and systematicity predicted communication score (d). Error regions are 95% confidence intervals.

discreteness using number of clusters found using
HDBSCAN. In our data, the number of clusters detected
(HDBSCAN with a minimum of two points per cluster)
ranged from one cluster to seven clusters. The most com-
mon number of clusters found was five (in twenty-three
out of fifty participants); we visually validated that in
these systems, participants typically clustered their sig-
nals around the five initialization signals.

The two discreteness measures were correlated with
each other (Pearson’s 7r=0.490, #48)=23.892,
p <0.001). They were also both positively correlated
with communication score (Hopkins statistic
Pearson’s r = 0.420, #(48) = 3.209, p = 0.002; number
of clusters Pearson’s r=0.499, t(48)=3.985,
p < 0.001; Fig. 5b).

3.2.4 Systematicity

For each participant, we measured systematicity by cal-
culating the distance correlation between pairs of sig-
nals and referents. Participants’ signaling systems
were generally systematic (M(SD) = 0.67(0.12)). For
each participant, we tested whether the calculated sys-
tematicity was above and beyond what would have
been produced by chance, by permuting the assignment
of signals to referents (10000 permutations per partici-
pant). The p-values for forty-six of the fifty participants
were below 0.05, with the majority of p-values below

0.001 (Fig. 5c) The initialization signals were not sys-
tematic (p = 0.171). Across participants, systematicity
was positively correlated with communication score
(Pearson’s 7 = 0.733, #(48) = 7.457, p < 0.001; Fig. 5a).

3.24.1

Our measure of systematicity captures but does not dir-
ectly distinguish between different ways systematicity
can emerge: Systematicity, operationalized on the sig-
nal level, can also act on the cluster level (i.e. similarity
between clusters is informative for their meaning) if
clusters exist. Moreover, a maximally systematic sys-
tem cannot be discrete, but a discrete system where
the clusters are not organized in a systematic way (i.e.
Fig. 2, row 2) would still display mild systematicity be-
cause similar signals are organized close together into
clusters.

We tested how much our clustering method can dis-
tinguish between whether systematicity emerged
within- or between-clusters. For each participant, we
calculated within-cluster systematicity for each cluster,
and between-cluster systematicity if more than three
clusters were detected using HDBSCAN with
min cluster size = 2, by calculating systematicity
using the cluster medoids (the point in the cluster with
the minimal distance to the other points in the cluster)
and their corresponding referents. Most participants

Systematicity in the presence of discreteness
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did not exhibit statistically significant amounts of
between-cluster systematicity (forty-two out of forty-
four participants for which three or more clusters were
detected). We also did not find evidence of
within-cluster systematicity in most of the clusters pro-
duced across participants (twenty-seven clusters across
twenty-three participants, out of 229 total clusters
across participants). For min cluster size = 2,
between-cluster systematicity was weakly correlated
with general systematicity (Pearson’s r=0.303,
t(42) =2.075,p = 0.044), but this was not robust across
different values (2-7) of themin cluster size par-
ameter. Between-cluster systematicity was not corre-
lated with communication score (Pearson’s » =0.165,
1(42) =1.085, p =0.284); this was also the case for
the other values (3-7) of themin cluster size par-
ameter that we tested (but note the difficulty of compar-
ing the amount of between-cluster systematicity
between systems with different numbers of clusters).
Thus, with our data and methods, we cannot make con-
clusions about whether either between- or within-
cluster systematicity emerged to support successful
communication. Although participants did seem to
form clustered systems, systematicity seems to instead
primarily be used to form a continuous gradient to inter-
polate between other clusters (Fig. 4a).

3.3 Systematicity and partner alignment
predict communication score

Finally, we conducted a linear regression predicting
communication score from all of the above (scaled) pre-
dictors: learning score, partner alignment, systematicity,
number of clusters, and Hopkins statistic. There was no
problematic multicollinearity (variance inflation factors
1.64-3.08). Partner alignment (b=0.402,
t(41) =2.934, p = 0.005) and systematicity (b = 0.421,
t(41) =2.480, p = 0.017) were significant predictors of
communication score (Fig. 5d), while the other predic-
tors, including both discreteness metrics, were not
(learning score b = —0.040, ¢(41) = —0.335, p = 0.740,
Hopkins stat b=-0.018, #(41)=-0.150, p =0.881,
n-clusters b =0.160, t(41) = 1.347, p = 0.185).

3.4 Qualitative analysis of individual
strategies

Some participants self-reported discovering novel tech-
niques for combining signals to communicate. Several
participants showed signs of compositional strategies
that combine two already-existing signals to refer to in-
between colors (e.g., participants combined signals for
red and yellow to refer to orange). Other participants
reported modifying continuous aspects of signals,
such as their lengths, to communicate to their partner

the distance between target color was from the color
that the signal was ‘prototypically’ associated with.

These results have direct bearing on debates about
the emergence of combinatorial signaling. For instance,
the first strategy described is essentially the ‘synthetic
route’ to combinatoriality outlined in Zuidema and
De Boer (2018), where combinatorial structure emerges
by building up complexity through the concatenation
of entire signals. Although such features of the data can-
not easily be captured with the signal-processing meth-
ods employed here (but see Hofer et al. 2021, for work
on more expressive modeling techniques), investigating
the emergence of signal-internal (combinatorial) struc-
ture or meaning-dependent (compositional) structure
in the context of this experimental paradigm is an im-
portant next step.

4. Discussion

We investigated how discreteness and systematicity inter-
act to support communication in continuous signal-
meaning spaces. In our study, participants learned a small
set of highly structured and nonsystematic signals to refer
to colors. They then were paired with another participant
and asked to generalize these associations to a larger space
of colors in a reference game. Participants produced novel
signals with their partners, to interpolate between the ini-
tialization signals in a systematic way. Discreteness and
systematicity were both correlated with communication
performance, and systematicity specifically predicted suc-
cessful communication.

Why might discreteness not be a predictor? We might
speculate that the compression of a communication sys-
tem into discrete signals is important for satisfying con-
straints other than successful communication, such as
learnability or memory constraints. Discreteness may
help participants generalize the learned signals to a larger
set of signals, but may not itself drive communication.
Additionally, the way that systematicity is calculated
also captures some aspects of discreteness: Systems that
are clustered would be detected as moderately systematic
if each cluster refers to a similar set of referents.

One limitation of our study is that we cannot assess
whether discreteness actually emerged from scratch.
Instead of assessing how participants establish an en-
tirely new communication system, we chose an arbi-
trary set of signal-color pairings to seed as ‘common
ground’. These initialization signals might have biased
participants toward discreteness (i.e. forming clusters
around the initialization signal-color mappings). The
reason for using initialization signals and a learning
phase was to make emergent systems more comparable
across participants, and maintain a reasonable task
length given the difficulty of establishing a new
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communication system from scratch (especially when
participants cannot rely on iconicity to bootstrap com-
municative conventions; Macuch Silva et al. 2020).

Our study shows how a continuous, one-dimensional
meaning space, along with repeated dyadic communica-
tion, imposes cognitive pressures on continuous systems
that lead to the use of discrete and systematic strategies.
These results imply that continuous meaning spaces
themselves may inherently impose learnability pressures
and drive structural organization in communication. It is
plausible that increasing the dimensionality of the color
space, such as including saturation or brightness, could
lead to additional pressures for structured signaling be-
yond what what we have observed (De Boer and
Verhoef 2012; Little et al. 2017). Another possible
source of communicative pressure is generational trans-
mission, where one generation’s signal-color mappings
are passed on to the next (Kirby et al. 2015).

The minimal artificial setup in our study allows us to
isolate the contribution of certain properties of commu-
nication systems in supporting successful communica-
tion. However, the continuous signal-meaning space
we use opens the door for many further questions, relat-
ing to existing properties in natural language. For ex-
ample, one question is whether and how participants’
emergent communication systems are influenced by the
color categories present in their native language (Xu
et al. 2013). While we test native English speakers,
who likely have cognitive biases shaped by English color
categories, participants in our experiment did not cluster
their generalized signals around categories that neatly
align with English color terms. However, over genera-
tions, emergent systems could reflect categories in nat-
ural language and/or information-theoretic principles
of color naming (Xu et al. 2013; Zaslavsky et al. 2018).

Finally, our current analyses focus on the similarities
between signals and their referents, based on the com-
plete repertoires that participants produced over the
eighty rounds. These analyses are important for study-
ing the relationship across signals, but do not consider
qualitative or quantitative structure within signals
themselves, or the temporal dynamics of social inter-
action. Previous work using continuous modalities,
notably with whistled signals, have found the emer-
gence of signal-internal structure in the form of com-
binatorial building blocks, which we did not explicitly
look for here (Verhoef et al. 2015; Hofer and Levy
2019). Although participants did self-report using com-
positional strategies, using DTW as a similarity metric
cannot capture emergent structure within signals.
Compositional strategies may be even more necessary
in a larger referent space that varies in additional di-
mensions (Little et al. 2017; Lieck and Rohrmeier
2021). Therefore, one direction for future research is

A. M. Chen et al.

exploring how compositional building blocks might
emerge within sound/phonetic space, that complement
the emergence of the kinds of systems we see in our ex-
periment. Furthermore, investigating the temporal di-
mensions of social interactions could shed light on
how such conventions form and stabilize over time.

In sum, we studied people’s communicative strategies
when they used continuous signals to communicate
about a continuous referent space. The partners that
were better at this were able to change their signals
from the initialization signals, building systematic com-
munication systems that allowed them to communicate
better over rounds. Studying the emergence of and
change in communication in a continuous signal-
meaning space may shed light on the cognitive proc-
esses that allowed humans to start using language.

Notes

1. Previous work has measured discreteness in various ways, in-
cluding human rater judgments (Goldstein 2003; Sandler
et al. 2011; Grice et al. 2017) and categorical perception
tasks in existing languages (Newport 1982; Gussenhoven
1999).

2. While this measure of discreteness is intuitive for small num-
bers of detected clusters—for example, a single cluster im-
plies a uniform distribution, while a few clusters indicate
discreteness—it becomes less interpretable at higher values.
It’s unclear, for instance, whether detecting seven clusters
meaningfully reflects greater discreteness than detecting six.

3. Note that we only look at the subset of discrete systems that
are convex; i.e. signals cluster but all signals within a cluster
refer to perceptually adjacent colors.

4. The number of MDS dimensions to retain was decided using
the elbow method; see Fig. A.3
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Appendix

Round 1/80 Round 1/ 80
Your role is speaker Your role is listener

Speaker target Listener choice Speaker target \ Listener choice

You are the speaker! Click on the item that you think the speaker is referring to.

Press “ to let the listener know you are done playing.

Fig. A.1. Screenshots of task. The speaker (left) moves the trunk of the creature to produce a signal to refer to a target color. The listener
(right) hears the the signal (while seeing the trunk move on the screen), and selects what they think the target color is, by clicking on the
color wheel.

) 1.0

b

(@)

o

)

c 1.0e+07

.0

)

(4] 7.5e+06

S o

c O

S 55 50e+06

e n

g 2.5e+06

@)

0.00 0.25 9.50 0.75 1.00 1 2 3 2 5 5 7
Learning score Number of dimensions

Fig. A.2. Communication score as a function of learning score. Fig. A.3. MDS stress values plotted against number of dimen-
Each point represents one participant, and the y-axis corresponds sions. MDS projections were calculated using all of the pairwise
to their partner’s performance in the communication phase. distances for all the combinations of signals, across all participants.
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