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Human spoken language uses a continuous stream of acoustic signals to communicate about continuous features of the world, by using 
discrete forms—words—that segment the world into categories. Here we investigate how discreteness (the segmentation of a continuous 
signal space into discrete forms) and systematicity (the consistent alignment of these forms with what they refer to in the world) can 
emerge under communicative pressure. In an exploratory study, participants were paired with one another and played a game in which 
they varied the pitch of auditory signals to communicate about a continuous color space, generalizing from a small, shared set of signal- 
color pairings. The emergent systems exhibited both discreteness and systematicity, but only systematicity robustly predicted 
successful communication. These findings offer insight into the cognitive strategies that could support the creation and evolution of 
language, highlighting how pressures for effective communication can shape continuous signal spaces into structured, learnable systems.
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One of the most intriguing aspects of human spoken 
language is that it exhibits both discrete and continuous 
properties. While language unfolds in a continuous me
dium—spoken words are transmitted as streams of 
acoustic signals that vary in pitch, duration, and inten
sity—listeners perceive these signals categorically 
(Liberman et al. 1967; Harnad 2003), allowing for 
clear distinctions between words like ‘bark’ and ‘park’ 
even though the underlying acoustic features are con
tinuous. Similarly, while some conceptual spaces 
underlying word meanings—such as the perceptual 
continuum for color—are continuous, words such as 
‘red’, ‘orange’, and ‘yellow’ correspond to concepts 
that carve out discrete categories within these spaces 
(Rosch 1973; Carey 2009). These categories are not in
herently predetermined (Berlin and Kay 1969), yet they 
allow for clear categorical distinctions that facilitate the 
infinite productivity that defines human language.

Moreover, the organization of these discrete units of 
sound and meaning is not arbitrary. Linguistic forms 

and meanings are often systematically aligned in the 
form of word order (e.g., we interpret the distinct mean
ings of ‘the cat chased the dog’ and ‘the dog chased the 
cat’; Sandler et al. 2005; Schouwstra and de Swart 
2014). And although relationships between form and 
meaning at the word level have traditionally been 
viewed as arbitrary (Hockett 1960), recent work has 
highlighted various ways in which systematicity is pre
sent even at this level, where sound patterns may carry 
meaning beyond arbitrary conventions (Monaghan 
et al. 2014; Dingemanse et al. 2015; Blasi et al. 2016; 
Pimentel et al. 2019). For example, similar-sounding 
words like ‘glow’, ‘gleam’, and ‘glimmer’, have phono
logical features that cue their related meanings (Bergen 
2004; Sidhu 2025). Likewise, a color naming system 
that uses the word ‘grue’ to label intermediate green- 
blue hues, would demonstrate systematicity.

Thus, in a continuous meaning space, using a con
tinuous physical medium, discreteness and systematic
ity critically work together to shape human language. 

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/10/1/lzaf003/8342268 by M

assachusetta Institute of Technology user on 25 N
ovem

ber 2025

https://orcid.org/0000-0001-5521-8566
https://orcid.org/0000-0002-6239-5488
https://orcid.org/0000-0002-5000-6668
https://orcid.org/0000-0002-4493-8864
https://orcid.org/0000-0003-3941-3518
mailto:aliciach@mit.edu
https://doi.org/10.1093/jole/lzaf003


Discreteness segments an infinite set of sounds and 
meanings into a finite set of categories that we commu
nicate about, thus providing the foundational building 
blocks for communication. And systematicity organizes 
these building blocks in ways that render form-meaning 
relationships highly transparent and predictable, bene
fiting acquisition and learnability (Dingemanse et al. 
2015; Raviv et al. 2021), processing and use 
(Monaghan et al. 2012; Nölle et al. 2018), as well as 
transmissibility and evolvability (Kirby et al. 2008; 
Xu et al. 2013; Raviv et al. 2019; Morin et al. 2022; 
Motamedi et al. 2022). In other words, given con
straints on information processing and learning (e.g., 
Gibson et al. 2019), these strategies simplify and struc
ture the form and meaning space, so that we can suc
cessfully communicate with each other. In the current 
work, we focus on the cognitive strategies underlying 
this link: how discreteness and systematicity might 
emerge to facilitate communicative goals.

Prior research has shown that both discreteness and 
systematicity can independently emerge in artificial lan
guages, but primarily in settings without real-time com
munication and without the continuous signal and 
meaning spaces that are reflective of human language. 
These studies often use already-discretized signaling 
spaces paired with continuous meaning spaces (e.g., 
Xu et al. 2013; Carr et al. 2017), or continuous signaling 
spaces paired with with already-discretized meaning 
spaces (e.g., De Boer and Verhoef 2012; Verhoef et al. 
2015, 2016). Nonetheless, systematicity has been ob
served to emerge in real-time communication games in
volving continuous signal spaces and discretized 
meaning spaces (Theisen et al. 2010; Verhoef et al. 
2016). Additionally, computer simulations have shown 
that both discreteness (Lieck and Rohrmeier 2021) and 
systematicity (Zuidema and Westermann 2003) can 
emerge as optimal solutions to communication prob
lems, but these studies have not explored how discrete
ness and systematicity interact under communicative 
pressure in real-time communication settings.

To directly study how these strategies emerge to sup
port communication, we designed an online communi
cation game (see Müller and Raviv 2021, for a review 
on the use of communication games for studying lan
guage evolution) using a minimal artificial setting 
where both the signal and meaning space are continu
ous, and where we could apply standard analysis tech
niques to investigate the emergence of discreteness and 
systematicity. More specifically, participants used whis
tled signals (Verhoef 2012), to communicate about col
ors. They had to create a communication system with 
their partner that generalized a small amount of ‘com
mon ground’ (a set of arbitrary signal-color pairings) 
to a larger set of colors. Thus, in our setting, both 

discreteness and systematicity are initially absent, but 
could emerge under communicative pressure. We con
ducted a set of exploratory analyses testing whether dis
creteness and systematicity emerged in the first place, as 
well as which of these strategies helped people commu
nicate successfully in the game.

1. Methods
Our experiment consisted of a learning phase immedi
ately followed by a communication phase (see Fig. 1). 
In the learning phase, each participant learned the 
same set of five signal-color mappings shown in 
Fig. 1a, initializing their ‘common ground’. In the com
munication phase, participants were then paired up and 
asked to communicate forty colors to each other, ex
trapolating from the learned signals to communicate 
about colors they had not encountered before.

1.1 Materials

1.1.1 Colors
The forty colors that participants had to communicate 
are shown in the color wheel of Fig. 1b. They are a slice 
from the World Color Survey’s (WCS) standard color 
naming grid (Berlin and Kay 1969), with a fixed bright
ness level (row F in the WCS grid). This choice of colors 
captures the hue dimension while maintaining a reason
able experiment length. Of these, the five colors utilized 
in the learning phase (Fig. 1a) were randomly chosen to 
be approximately equidistant, with slight random per
turbations of ±1 − 3 color chips away from the initial 
selections to introduce perceptual irregularity.

1.1.2 Signals
The signals were produced by an on-screen slide whistle 
interface similar to Hofer and Levy (2019), represented 
as sequences of pitch over time (Fig. 1a). In our experi
ment, this whistle was visually represented as the trunk 
of an alien creature, which participants controlled using 
the mouse and space bar. Stretching the creature’s trunk 
decreased the pitch, while shortening it increased the 
pitch (see https://osf.io/ynbp6/ for a video sample). To 
obtain the five initialization signals (Fig. 1a), we selected 
signals with a variety of structured perceptual features, 
from a larger set of signals previously evaluated in a 
norming study conducted by Hofer and Levy (2019) in 
which subjects were asked to rate signals according to 
their relative complexity and perceptual similarity.

1.2 Procedure

1.2.1 Learning phase
During the learning phase, each participant learned the 
same five signal-color mappings (Fig. 1a). First, participants 
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heard the signal for each color and were instructed to use 
their own slide whistle to reproduce the signal. This was 
done five times for each signal-color pairing. Then, we 
tested how well participants remembered the signal-color 
mappings: For each pairing, the signal was played while 
participants saw the target color and a distractor color 
(pseudo-randomly selected from the remaining four col
ors), and had to guess the color corresponding to the signal. 
Participants passed if they correctly guessed four of the five 
pairings. No feedback was given for this phase of the task. 
Finally, to measure how well participants actually remem
bered each signal, we asked participants to reproduce the 
signals for each of the five colors from memory.

1.2.2 Communication phase
After passing the learning phase, participants were 
grouped into pairs and randomly assigned speaker and 
listener roles that alternated every five trials. In each tri
al, the speaker produced a whistled signal to convey a 
designated target color to the listener. The listener 
then indicated their guess on a color wheel containing 
forty colors (see Fig. 1). Once the trial ended, both par
ticipants saw the target and the guessed color, and bonus 
payments were given based on how accurate the listen
er’s guess was in terms of perceptual distance in color 
space (see Analysis Techniques section below for specif
ics). Participants were given blocked feedback about 
how close their guesses were, on average, across the 
last 10 trials. Each participant had forty trials as speaker 
and forty as listener, with the order of the colors and the 
color wheel orientation randomized between partici
pants. See Fig. A.1 for screenshots of the task.

1.3 Participants
We recruited sixty-five native English speakers from the 
USA or Canada with normal or corrected-to-normal 

vision, from the crowdsourcing platform Prolific. 
Participants were prescreened using a color sorting 
task (Foutch et al. 2011) and a short audio task 
(Woods et al. 2017) to verify that they have normal col
or vision and that they were using headphones. Of these, 
fifty-four participants passed the learning phase and 
advanced to the communication phase, with fifty partic
ipants successfully completing the communication 
phase, resulting in twenty-five full games. 
Compensation was variable based on progress in the 
study, but averaged 15 per hour. Participants received 
an additional bonus of up to approximately 10% of their 
earnings contingent on their performance in the learning 
and communication tasks. Participants gave informed 
consent, and all procedures were approved by the MIT 
Committee for the Use of Humans as Experimental 
Subjects.

1.4 Analysis techniques

1.4.1 Measuring similarity between signals and 
referents
To examine participants’ communication systems, we 
analyze our data using measures of similarity, classical
ly used to study people’s mental representations in vari
ous domains including color (Shepard 1987; Shepard 
and Cooper 1992).

1.4.1.1 Similarity between signals
The signals participants produced in the experiment are 
time series data represented as pitch over time. To de
termine similarity between signals, we used Dynamic 
Time Warping (DTW; Sakoe and Chiba 1978; Berndt 
and Clifford 1994), following its use in prior work to 
analyze continuous signals in cultural transmission ex
periments (e.g., Verhoef 2012). DTW is a technique 

a b

Fig. 1. Experimental setup. In the learning phase (a), participants learn five initialization signal-color pairings (signals shown are a visualiza
tion of pitch over time). In the communication phase (b), participants are assigned speaker and listener roles, and have to extrapolate their 
learned signals to communicate about a total of forty colors.
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used to measure the similarity between two sequences 
that may vary in speed or duration. Unlike standard dis
tance measures that compare signals point-by-point at 
corresponding time intervals, DTW flexibly aligns se
quences by allowing the temporal axis to be stretched 
or compressed. This alignment process matches ele
ments of the two sequences based on their overall 
shapes, effectively minimizing differences in timing. 
Thus, even if one signal spans two seconds and another 
spans five seconds, they can still be considered highly 
similar if their overall shapes closely match (refer to 
Fig. 1 for example signals). DTW is particularly useful 
in analyzing human-generated signals such as speech 
or gesture, where timing often varies naturally but the 
overall patterns remain consistent and are more inform
ative for their meaning.

1.4.1.2 Similarity between referents
We used Euclidean distance in CIELUV color space to 
quantify similarity between colors. The CIELUV color 
space represents colors using three numerical values: 
L∗, u∗, v∗ (chromaticity coordinates). It is specifically 
designed so that the Euclidean distance between two 
points corresponds to the perceptual distance perceived 
by human observers. In other words, two colors that are 
numerically closer in this space appear more similar to 
human vision than colors that are numerically farther 
apart (Schanda 2007).

1.4.2 Visualizing signal similarities in a 
lower-dimensional space
To qualitatively visualize and compare participants’ sig
nal repertoires, we calculated signal similarities for all 
signal pairs across participants using DTW, allowing 
us to embed and visualize the data in a lower- 
dimensional space using multidimensional scaling 
(MDS; Kruskal 1964). MDS is a statistical technique 
that represents similarities between items as distances 
in a lower-dimensional space, preserving the relative re
lationships observed in the original, higher-dimensional 
data. It has classically been used to visualize human simi
larity judgments, such as perceived similarities among 
objects, concepts, or perceptual stimuli (Shepard and 
Cooper 1992). In our study, MDS allows us to project 
information about the signals into a space that we can 
visually interpret, as well as use for further calculations.

1.4.3 Discreteness and systematicity
We next turn to how we measured discreteness and sys
tematicity—the critical features of participants’ com
munication systems that we were interested in.

The conceptual examples in Fig. 2 display different 
combinations of discreteness and systematicity that 

participants’ communication systems can exhibit. In 
this visualization, each marker represents an individual 
signal (colored by its corresponding referent), posi
tioned along a one-dimensional signal-similarity space. 
The distance between markers represents perceptual 
differences between signals, such that signals closer to
gether are perceived as more similar. This simplified re
presentation corresponds to a 1D projection computed 
using MDS, on DTW similarities.

1.4.3.1 Discreteness
Human language segments the continuous spectrum of 
human experience into discrete categories marked by 
categorical boundaries, even in continuous perceptual 
spaces like colors, motion, spatial relationships, and 
time. In our conceptual examples, a signaling system ex
hibits high discreteness (Fig. 2, rows 1 and 2) if signals 
clearly cluster into distinct groups. Such clusters are 
analogous to linguistic words—discrete entities that 
map onto sets or ranges of referents.

To quantitatively measure discreteness, we opera
tionalized discreteness in two complementary ways, 
each capturing distinct intuitions about what it means 
for a system to be discrete.1 First, we calculated the 
Hopkins statistic (Lawson and Jurs 1990), computed 
on MDS embeddings. The Hopkins statistic quantifies 
how clustered a system is, by comparing distances be
tween points and their nearest neighbors in the dataset 
against distances from points in a uniformly distributed 
null. Values range from 0 (highly regular distribution 
with minimal clustering) to 1 (highly clustered), with 
0.5 indicating a random uniform distribution. This 
metric captures the overall tendency for signals to 
form distinct clusters rather than being evenly spread 
out from each other.

We also measured discreteness using the number of 
clusters detected by Hierarchical Density-Based 
Spatial Clustering of Applications with Noise 
(HDBSCAN; Campello et al. 2013). HDBSCAN is a 
nonparametric clustering algorithm that identifies clus
ters based on local density, requiring only one major 
free parameter (minimum points per cluster). It is ro
bust to varying cluster shapes and densities, and oper
ates directly on the DTW signal similarities, making it 
particularly suitable for detecting natural groupings 
within signal spaces. HDBSCAN identifies distinct clus
ters in regions where signals densely concentrate, and 
returns a single cluster if the signals are uniformly dis
tributed. This metric captures a more indirect notion 
of discreteness: the notion that discrete systems consist 
of multiple clearly defined groups of similar signals 
(analogous to the number of words in a language).2
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1.4.3.2 Systematicity
A signaling system has high systematicity (Fig. 2, rows 1 
and 3) if signal forms provide reliable cues to their 
meanings. In the context of our experiment, the exist
ence of systematicity implies a consistent relationship 
between the similarity of signals and the similarity of 
their associated colors. For example, signals represent
ing similar colors (such as blue and green) should sound 
more alike than signals representing more distinct col
ors (such as blue and yellow).

To quantify systematicity, we computed the distance 
correlation between pairwise DTW distances (signal 
similarities) and CIELUV distances (color similarities). 
Distance correlation is a measure that captures both lin
ear and nonlinear relationships between two sets of dis
tances (Székely et al. 2007), and is analogous to the way 
systematicity has been calculated in previous work 
(e.g., Mantel 1967; Kirby et al. 2008; Verhoef et al. 
2015; Atkinson et al. 2019). Distance correlation 
ranges from 0, indicating no relationship (independ
ence), to 1, indicating a perfect deterministic corres
pondence between signal similarity and referent 
similarity.

2. The discreteness-systematicity 
hypothesis space
What could participants’ extrapolated communication 
systems look like? The most straightforward strategy 
is that participants simply reproduce their signals into 
perceptually similar clusters around the nonsystematic 
initialization signal-color pairings (Fig. 2 row 2; low 
systematicity high discreteness). Alternatively, partici
pants could come up with new, systematic signals to 

refer to each cluster (Fig. 2 row 1; high systematicity 
and high discreteness)—this strategy may be more chal
lenging because participants have to come up with new 
agreed-upon signal-meaning pairs, but the increased 
systematicity could facilitate communication because 
of increased expressivity.3 Finally, strategies that could 
theoretically enable participants to precisely communi
cate all of the colors are communication systems where 
each signal corresponds to a distinct meaning (i.e. low 
discreteness). Such a system could either exhibit high 
(Fig. 2 row 3) or low (Fig. 2 row 4) systematicity.

From this, we can see that systematicity and discrete
ness can interact with each other in nuanced ways. A 
maximally systematic language would be highly expres
sive, capable of communicating fine-grained differences 
in meaning, but could impose cognitive pressures on 
learning and memory. By contrast, a discrete system 
might be less expressive but more conducive to learning 
and coordination. Simply reproducing initialization sig
nals for perceptually similar clusters could facilitate 
communication by reducing miscoordination risks, 
while forming new systematic communication systems 
might enhance learnability and informativity.

3. Results
3.1 Performance in the learning 
and communication phases
We started by evaluating how well participants were 
able to learn the signals and generalize their learned sig
nals to communicate with their partners, in the first 
place. To this end, we assessed the performance in the 
learning and communication phase. For the learning 
phase, we measured performance by how accurately 
people reproduced the five signals at the end of the 

Fig. 2. The discreteness-systematicity hypothesis space. Each signal, associated with a referent (its color), is represented by a point in a 
one-dimensional signal-similarity space.
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learning phase. Specifically, we calculated the average 
DTW distance between participants’ reproductions 
and the original initialization signals. This average 
was then normalized across participants to obtain a 
learning score, with 0 indicating minimal learning and 
1 indicating the most learning.

We assessed the communication phase performance 
based on how accurately speakers guided their partner 
to the target color. For each trial, communication ac
curacy was determined using CIELUV distances be
tween the target color and the guessed color, 
normalized between 0 (identical colors) and 1 (the 
most perceptually distinct pairs among the forty experi
mental color patches).

Intuitively, we expect participants that are better 
learners to do better in the communication phase be
cause they would be able to, on average, more accurately 
recall their partners’ signal-color associations and com
municative tendencies. This was indeed the case (linear 
regression predicting communication score from learn
ing score; b = .241, t(45) = 3.022, p = .004; Fig. A.2).

To further assess how communication performance 
evolves as a function of interaction time, we used a linear 
mixed-effects model, with random intercepts for game 
and participant, to predict communication score from 
round (each participant communicated about the forty 
colors, so there were eighty rounds in total). 
Participants performed above chance overall (Fig. 3a; 
M = 0.665, SE = 0.022, CI: [0.62, 0.71], 
t(24) = 7.699, p < 0.001). Performance increased 
across rounds (b = 0.002, t(1974) = 6.654, p < 0.001). 

This suggests that participants were able to successfully 
establish communicative conventions that allowed 
them to go beyond the systems with which they started, 
consistent with findings in related work on convention 
formation in reference games (e.g., Hawkins et al. 
2023).

3.2 Communication strategies
Having established that participants successfully learn 
to communicate in our experimental setting, we next 
turn to assessing what specific strategies enabled suc
cessful communication.

3.2.1 Representing and visualizing signals
We computed the MDS embeddings using the pairwise 
DTW signal similarity calculations. The quality of MDS 
solutions is typically evaluated using stress values, which 
quantify discrepancies between the original similarity dis
tances and the distances in the lower-dimensional embed
ding. See Fig. A.3 for MDS stress values as a function of 
the number of dimensions retained.

Figure 4b depicts an MDS representation of all sig
nals across all games, including the five initialization 
signals from the learning phase. Each signal is colored 
by its associated referent color, and the intialization sig
nals are marked in boxes. Signals generally cluster 
around the five initially learned signal-color associa
tions. More surprising, however, is the emergent struc
ture between the produced signals. Some signals 
migrated to form a systematic hue gradient: For 

a b

Fig. 3. (a) Communication score (black curve) as a function of the number of online communication rounds. With time, participants learn to 
communicate successfully. (b) Communication score (black curve) as a function of the alignment between the dyad’s signal repertoires. 
Each point represents one game, and the y-axis corresponds to the mean of the two players’ communication score within a game. As ex
pected, partners with more aligned repertoires communicated better. In both plots, shaded regions correspond to 95% confidence inter
vals and dashed red lines correspond to baseline communication scores (i.e. random guesses).
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example, yellow and pink signals migrated to be be
tween the initial purple and green signals.

To assess whether similar systematic patterns appear 
across individual participants, we visualized participants’ 
signals in a one-dimensional embedding space, ordered 
by communication score (Fig. 4a). These embeddings in
dicate that this systematic structure persists at the individ
ual level: Participants produced intermediate signals to 
interpolate between the learned signal-color pairings, in 
a systematic way. Participants who were the least success
ful at communicating displayed low systematicity and 
discreteness, while participants who communicated bet
ter seemed to display higher discreteness as well as emer
gent systematic structure. The raw signals for each of the 
games are visualized at https://osf.io/mwnfy. Next, we as
sess these qualitative observations quantitatively.

3.2.2 Partner alignment
What properties could drive successful communication? 
The first dimension of interest we consider is how much 
the two players’ signals align, within a game. Successful 
communication is often characterized by the emergence 
of shared conventions (Lewis 1969; Hawkins et al. 
2019), implying that successful dyads in our task would 
produce similar signals to refer to the same color. To 
quantify this, for each game we calculated the similarity 
of the two partners’ repertoires: For each color, we cal
culated the similarity between the two partners’ signals, 

and averaged this measure across all referents to obtain 
a measure of partner alignment for each game (nor
malized to be between 0 and 1, where 1 indicates 
the most alignment). The degree to which partners’ 
signals were aligned, was correlated with how well 
they communicated with each other (alignment vs. 
within-game average communication score; Pearson’s 
r(23) = 0.752, t(23) = 5.465, p < 0.001) (Fig. 3b).

We tested how much this effect is explained by how 
well individual participants are able to remember 
signal-color pairings in the first place. In a linear regres
sion predicting communication score from partner 
alignment and learning score, we found a main effect 
of alignment but not of learning score (alignment 
b = 0.288, t(44) = 6.202, p < 0.001; learning score 
b = 0.012, t(44) = 1.144, p = 0.259), suggesting that 
memory for specific signals does not itself drive partic
ipants’ ability to align their signals to each other and do 
better in the task.

3.2.3 Discreteness
Next, we investigate what properties of participants’ 
emergent communication systems did help them com
municate better in the task. We started by calculating 
the Hopkins statistic computed on three-dimensional 
MDS embeddings.4 In three-dimensional embedding 
space, participants’ systems tended to be discrete; 
M(SD) discreteness = 0.75(0.06). We then measured 

a b

Fig. 4. Qualitative assessment of the use of systematicity. (a) A one-dimensional MDS embedding of the emergent signaling systems. Each 
pair of lines corresponds to the two partners in a game. Each dot corresponds to a signal, and is colored by its target color. The games are 
sorted by their average communication score. (b) A two-dimensional MDS visualization of all emergent signals across all dyads. As in (a), 
each dot corresponds to a signal and is colored by its target color. Black squares correspond to the initialization signals.
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discreteness using number of clusters found using 
HDBSCAN. In our data, the number of clusters detected 
(HDBSCAN with a minimum of two points per cluster) 
ranged from one cluster to seven clusters. The most com
mon number of clusters found was five (in twenty-three 
out of fifty participants); we visually validated that in 
these systems, participants typically clustered their sig
nals around the five initialization signals.

The two discreteness measures were correlated with 
each other (Pearson’s r = 0.490, t(48) = 3.892, 
p < 0.001). They were also both positively correlated 
with communication score (Hopkins statistic 
Pearson’s r = 0.420, t(48) = 3.209, p = 0.002; number 
of clusters Pearson’s r = 0.499, t(48) = 3.985, 
p < 0.001; Fig. 5b).

3.2.4 Systematicity
For each participant, we measured systematicity by cal
culating the distance correlation between pairs of sig
nals and referents. Participants’ signaling systems 
were generally systematic (M(SD) = 0.67(0.12)). For 
each participant, we tested whether the calculated sys
tematicity was above and beyond what would have 
been produced by chance, by permuting the assignment 
of signals to referents (10000 permutations per partici
pant). The p-values for forty-six of the fifty participants 
were below 0.05, with the majority of p-values below 

0.001 (Fig. 5c) The initialization signals were not sys
tematic (p = 0.171). Across participants, systematicity 
was positively correlated with communication score 
(Pearson’s r = 0.733, t(48) = 7.457, p < 0.001; Fig. 5a).

3.2.4.1 Systematicity in the presence of discreteness
Our measure of systematicity captures but does not dir
ectly distinguish between different ways systematicity 
can emerge: Systematicity, operationalized on the sig
nal level, can also act on the cluster level (i.e. similarity 
between clusters is informative for their meaning) if 
clusters exist. Moreover, a maximally systematic sys
tem cannot be discrete, but a discrete system where 
the clusters are not organized in a systematic way (i.e. 
Fig. 2, row 2) would still display mild systematicity be
cause similar signals are organized close together into 
clusters.

We tested how much our clustering method can dis
tinguish between whether systematicity emerged 
within- or between-clusters. For each participant, we 
calculated within-cluster systematicity for each cluster, 
and between-cluster systematicity if more than three 
clusters were detected using HDBSCAN with 
min_cluster_size = 2, by calculating systematicity 
using the cluster medoids (the point in the cluster with 
the minimal distance to the other points in the cluster) 
and their corresponding referents. Most participants 

a b

c d

Fig. 5. Systematic (a) and discrete (b) systems were better for communication. Most participants produced systematic communication sys
tems (c), and partner alignment and systematicity predicted communication score (d). Error regions are 95% confidence intervals.
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did not exhibit statistically significant amounts of 
between-cluster systematicity (forty-two out of forty- 
four participants for which three or more clusters were 
detected). We also did not find evidence of 
within-cluster systematicity in most of the clusters pro
duced across participants (twenty-seven clusters across 
twenty-three participants, out of 229 total clusters 
across participants). For min_cluster_size = 2, 
between-cluster systematicity was weakly correlated 
with general systematicity (Pearson’s r = 0.305, 
t(42) = 2.075, p = 0.044), but this was not robust across 
different values (2–7) of the min_cluster_size par
ameter. Between-cluster systematicity was not corre
lated with communication score (Pearson’s r = 0.165, 
t(42) = 1.085, p = 0.284); this was also the case for 
the other values (3–7) of the min_cluster_size par
ameter that we tested (but note the difficulty of compar
ing the amount of between-cluster systematicity 
between systems with different numbers of clusters). 
Thus, with our data and methods, we cannot make con
clusions about whether either between- or within- 
cluster systematicity emerged to support successful 
communication. Although participants did seem to 
form clustered systems, systematicity seems to instead 
primarily be used to form a continuous gradient to inter
polate between other clusters (Fig. 4a).

3.3 Systematicity and partner alignment 
predict communication score
Finally, we conducted a linear regression predicting 
communication score from all of the above (scaled) pre
dictors: learning score, partner alignment, systematicity, 
number of clusters, and Hopkins statistic. There was no 
problematic multicollinearity (variance inflation factors 
1.64–3.08). Partner alignment (b = 0.402, 
t(41) = 2.934, p = 0.005) and systematicity (b = 0.421, 
t(41) = 2.480, p = 0.017) were significant predictors of 
communication score (Fig. 5d), while the other predic
tors, including both discreteness metrics, were not 
(learning score b = −0.040, t(41) = −0.335, p = 0.740, 
Hopkins stat b = −0.018, t(41) = −0.150, p = 0.881, 
n-clusters b = 0.160, t(41) = 1.347, p = 0.185).

3.4 Qualitative analysis of individual 
strategies
Some participants self-reported discovering novel tech
niques for combining signals to communicate. Several 
participants showed signs of compositional strategies 
that combine two already-existing signals to refer to in- 
between colors (e.g., participants combined signals for 
red and yellow to refer to orange). Other participants 
reported modifying continuous aspects of signals, 
such as their lengths, to communicate to their partner 

the distance between target color was from the color 
that the signal was ‘prototypically’ associated with.

These results have direct bearing on debates about 
the emergence of combinatorial signaling. For instance, 
the first strategy described is essentially the ‘synthetic 
route’ to combinatoriality outlined in Zuidema and 
De Boer (2018), where combinatorial structure emerges 
by building up complexity through the concatenation 
of entire signals. Although such features of the data can
not easily be captured with the signal-processing meth
ods employed here (but see Hofer et al. 2021, for work 
on more expressive modeling techniques), investigating 
the emergence of signal-internal (combinatorial) struc
ture or meaning-dependent (compositional) structure 
in the context of this experimental paradigm is an im
portant next step.

4. Discussion
We investigated how discreteness and systematicity inter
act to support communication in continuous signal- 
meaning spaces. In our study, participants learned a small 
set of highly structured and nonsystematic signals to refer 
to colors. They then were paired with another participant 
and asked to generalize these associations to a larger space 
of colors in a reference game. Participants produced novel 
signals with their partners, to interpolate between the ini
tialization signals in a systematic way. Discreteness and 
systematicity were both correlated with communication 
performance, and systematicity specifically predicted suc
cessful communication.

Why might discreteness not be a predictor? We might 
speculate that the compression of a communication sys
tem into discrete signals is important for satisfying con
straints other than successful communication, such as 
learnability or memory constraints. Discreteness may 
help participants generalize the learned signals to a larger 
set of signals, but may not itself drive communication. 
Additionally, the way that systematicity is calculated 
also captures some aspects of discreteness: Systems that 
are clustered would be detected as moderately systematic 
if each cluster refers to a similar set of referents.

One limitation of our study is that we cannot assess 
whether discreteness actually emerged from scratch. 
Instead of assessing how participants establish an en
tirely new communication system, we chose an arbi
trary set of signal-color pairings to seed as ‘common 
ground’. These initialization signals might have biased 
participants toward discreteness (i.e. forming clusters 
around the initialization signal-color mappings). The 
reason for using initialization signals and a learning 
phase was to make emergent systems more comparable 
across participants, and maintain a reasonable task 
length given the difficulty of establishing a new 
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communication system from scratch (especially when 
participants cannot rely on iconicity to bootstrap com
municative conventions; Macuch Silva et al. 2020).

Our study shows how a continuous, one-dimensional 
meaning space, along with repeated dyadic communica
tion, imposes cognitive pressures on continuous systems 
that lead to the use of discrete and systematic strategies. 
These results imply that continuous meaning spaces 
themselves may inherently impose learnability pressures 
and drive structural organization in communication. It is 
plausible that increasing the dimensionality of the color 
space, such as including saturation or brightness, could 
lead to additional pressures for structured signaling be
yond what what we have observed (De Boer and 
Verhoef 2012; Little et al. 2017). Another possible 
source of communicative pressure is generational trans
mission, where one generation’s signal-color mappings 
are passed on to the next (Kirby et al. 2015).

The minimal artificial setup in our study allows us to 
isolate the contribution of certain properties of commu
nication systems in supporting successful communica
tion. However, the continuous signal-meaning space 
we use opens the door for many further questions, relat
ing to existing properties in natural language. For ex
ample, one question is whether and how participants’ 
emergent communication systems are influenced by the 
color categories present in their native language (Xu 
et al. 2013). While we test native English speakers, 
who likely have cognitive biases shaped by English color 
categories, participants in our experiment did not cluster 
their generalized signals around categories that neatly 
align with English color terms. However, over genera
tions, emergent systems could reflect categories in nat
ural language and/or information-theoretic principles 
of color naming (Xu et al. 2013; Zaslavsky et al. 2018).

Finally, our current analyses focus on the similarities 
between signals and their referents, based on the com
plete repertoires that participants produced over the 
eighty rounds. These analyses are important for study
ing the relationship across signals, but do not consider 
qualitative or quantitative structure within signals 
themselves, or the temporal dynamics of social inter
action. Previous work using continuous modalities, 
notably with whistled signals, have found the emer
gence of signal-internal structure in the form of com
binatorial building blocks, which we did not explicitly 
look for here (Verhoef et al. 2015; Hofer and Levy 
2019). Although participants did self-report using com
positional strategies, using DTW as a similarity metric 
cannot capture emergent structure within signals. 
Compositional strategies may be even more necessary 
in a larger referent space that varies in additional di
mensions (Little et al. 2017; Lieck and Rohrmeier 
2021). Therefore, one direction for future research is 

exploring how compositional building blocks might 
emerge within sound/phonetic space, that complement 
the emergence of the kinds of systems we see in our ex
periment. Furthermore, investigating the temporal di
mensions of social interactions could shed light on 
how such conventions form and stabilize over time.

In sum, we studied people’s communicative strategies 
when they used continuous signals to communicate 
about a continuous referent space. The partners that 
were better at this were able to change their signals 
from the initialization signals, building systematic com
munication systems that allowed them to communicate 
better over rounds. Studying the emergence of and 
change in communication in a continuous signal- 
meaning space may shed light on the cognitive proc
esses that allowed humans to start using language.

Notes
1. Previous work has measured discreteness in various ways, in

cluding human rater judgments (Goldstein 2003; Sandler 
et al. 2011; Grice et al. 2017) and categorical perception 
tasks in existing languages (Newport 1982; Gussenhoven 
1999).

2. While this measure of discreteness is intuitive for small num-
bers of detected clusters—for example, a single cluster im-
plies a uniform distribution, while a few clusters indicate 
discreteness—it becomes less interpretable at higher values. 
It’s unclear, for instance, whether detecting seven clusters 
meaningfully reflects greater discreteness than detecting six.

3. Note that we only look at the subset of discrete systems that 
are convex; i.e. signals cluster but all signals within a cluster 
refer to perceptually adjacent colors.

4. The number of MDS dimensions to retain was decided using 
the elbow method; see Fig. A.3
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Appendix

Fig. A.2. Communication score as a function of learning score. 
Each point represents one participant, and the y-axis corresponds 
to their partner’s performance in the communication phase.

Fig. A.1. Screenshots of task. The speaker (left) moves the trunk of the creature to produce a signal to refer to a target color. The listener 
(right) hears the the signal (while seeing the trunk move on the screen), and selects what they think the target color is, by clicking on the 
color wheel.

Fig. A.3. MDS stress values plotted against number of dimen
sions. MDS projections were calculated using all of the pairwise 
distances for all the combinations of signals, across all participants.
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